
Behandlung von Kälbern mit Durchfall

Walter Grünberg

Bedeutung des Kälberdurchfalls

Ausgangslage

Durchfall bei Kälbern

Antibiotika

- Durchfall bei Kälbern ist nach Mastitis die häufigste Ursache für den Einsatz von Antibiotika bei Rindern
 Eibl et I. 2022 Uyama et al. 2022
- In der Praxis werden regelmäßig Antibiotika der Kategorie B als erste oder zweite Wahl eingesetzt

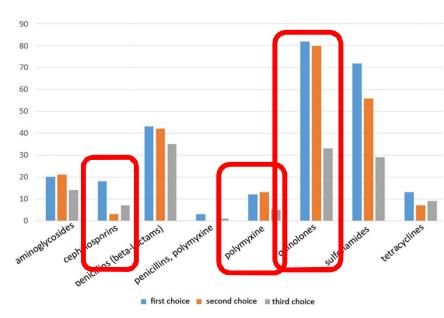


Figure 3. Use of antibiotic classes as first, second, or third choice.

Eibl et I. 2022

Geschichte der Antibiose bei Kälbern

Prophylaxe

1950er und 1960er

Lassiter CA 1955

- Orale Antibiose
- Antibiotika eingemischt in Milchaustauscher / Pellets

1970er parenterale Antibiose

Lister und MacKay 1970

- mit verschiedenen Wirkstoffkombinationen
- Ziele waren...
 - Verbesserung der Tageszunahmen
 - Verringerung der Krankheitsverluste

Geschichte der Antibiose bei Kälbern

Therapie

- Seit den 1970ern parenterale Antibiose als Standard und "Schlüsseltherapie" bei Kälberdurchfall
 - Orale Rehydratation, Modulatoren der Darmperistaltik wurden lediglich als "unterstützende Therapie" verstanden
- In den 1980ern Kälberdurchfall als "Parade-Indikation" für Enrofloxacin
 - Baytril® seit 1983 auf dem Markt
- Antibiotikaeinsatz fand regelmäßig in Unkenntnis der genauen Ursache statt

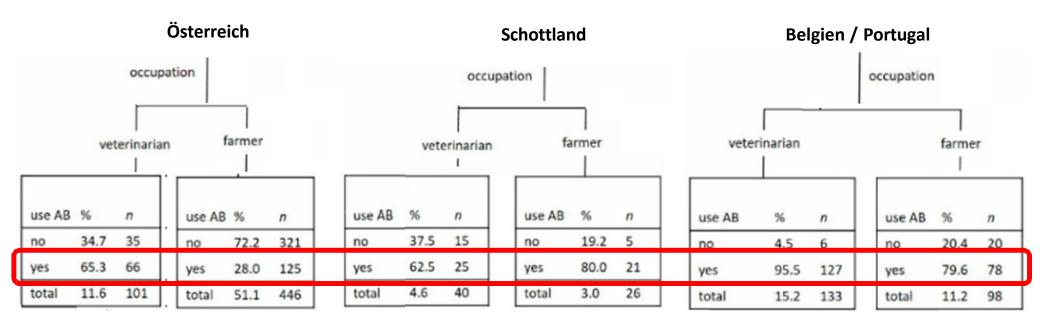
Beispiel USA

 For preweaned heifers affected with a disease or disorder during the previous 12 months, percentage of preweaned heifers treated with an antibiotic

antibiotic Disease or Disorder	Percent Affected Preweaned Heifers Treated	Standard Error
Respiratory	93.4	(2.3)
Diarrhea or other digestive problem	74.5	(4.8)
infection	92.3	(2.4)
Other	97.2	(1.9)

Percent Preweaned Heifers*

	Affe	ected	Tre	ated	affect	ent of ed that treated
Disease/disorder	Pct.	Std. error	Pct.	Std. error	Pct.	Std. error
Diarrhea or other digestive	21.1	(2.0)	16.0	(2.0)	75.9	(4.5)
Respiratory	12.0	(1.4)	11.4	(1.3)	94.8	(2.9)
Navel infection	1.7	(0.3)	1.5	(0.2)	91.0	(4.7)
Other	0.1	(0.1)	0.1	(0.0)	65.8	(16.4)


^{*}As a percentage of dairy heifer calves born alive in 2013.

USDA Dairy 2014

USDA Dairy 2007

Beispiel Europa

Setzen Antibiotika immer oder überwiegend ein

Eibl et al. 2022

Indikationen

- Bekämpfung eines bakteriellen Primärerregers für Kälberdurchfall
 - z.B. Salmonella spp, ETEC, STEC, EIEC, EPEC....
- Behandlung / Vermeidung einer sekundären Septikämie nach Translokation von Bakterien durch die geschädigte Darmwand

Die Behandlung einer Dysbiose* im Darm sollte NICHT die Primärindikation für Antibiose sein

^{*} Sekundäre Verschiebung des Darm-Mikrobioms als Folge der Durchfallerkrankung

AMRFV-Training 10/2025- Frankfurt a.M. - Walter Grünberg

Durchfallerreger beim Kalb

Häufigkeit

•	Kryptosporidien	41.3%
---	-----------------	-------

37,8% Rota

3,4% Corona

0,9% **ETEC**

Eimerien 13,4%

Giardien 7,2%

RESEARCH ARTICLE Giardiosis and other enteropathogenic infections: A Study on diarrhoeir enteropathogenic infections: Julia Gillhuber 1. David Rigamer? Kurt Pfister 1 and Miriam C Scheuerle 1

Gilhuber et al. 2014

Septikämie beim kranken Kalb

Häufigkeit

Studie	Lofstedt et al. 1999	Fecteau et al. 1997	Pas et al. 2022
Tiere	Klinikpatienten mit Diarrhoe	"Kranke" Bullenkälber Mastbetrieb	Kritische Klinikpatienten
Alter	< 20 Tage	< 28 Tage	< 130 Tage
n	256	190	230
% BU-positiv	31%	24 -31%	34,3%
Mortalität	BU+: 70,5% BU-: 19%	BU+: 57,4% BU-: 15,1%	BU+: 76,9% BU-: 53,6%
Keime	E. coli	E. coli	E. coli
	Camphylobacter spp. Staphylococcus spp	Klebsiella pneumoniae Salmonella typhimurium 	Staphylococcus spp Salmonella spp.

Zwischen-Fazit

- Fragen die im Rahmen der Untersuchung abzuwägen sind:
 - Wie erkenne ich Kälber bei welchen der Einsatz von Antibiose indiziert ist?
 - Welchen Wirkstoff setze ich ein?

Wie erkenne ich Kälber die Antibiose benötigen

Hilfskriterien

- Fieber
- Außer Darm noch andere Organe betroffen
 - Nabel
 - Gelenke
 - Lunge
- Kotbeschaffenheit
 - Blutbeimengungen
 - Gewebsbeimengungen

- Schweregrad der Störung des Allgemeinbefindens
 - Geringgradig
 - · Erhaltener Saugreflex, Stehfähig
 - Mittelgradig
 - Verminderte Aktiviität, etwas reduzierte Tränkeaufnahm
 - Hochgradig
 - Geringe / keine Tränkeaufnahme, schlecht / nicht stehfähig

• ...

Constable 2014 Gomez et al. 2017

Hilfskriterien

Fieber

Antibiotikaeinsatz beim Durchfallkalb

des

- Außer D
 Organe b_
 - Nabel
 - Gelenke
 - Lunge

- Planmäßig einsetzen
 - Vordefinierte Entscheidungskriterien
- In Absprache mit dem Tierarzt
 - Welches Antibiotikum
 - In welcher Dosis
 - Auf welchem Weg
 - Wie lange

Kotbesc - Ständige Verlaufs- / Erfolgskontrolle

cht /

Gomez et al. 2017

- Blutbeimengungen
- Gewebsbeimengungen

Constable 2014

Wie treffe ich die Wirkstoffauswahl

Einsatz von Antibiotika bei Kälbern mit Durchfall Überlegungen vorab

- Bei Verdacht einer Septikämie muss die Therapie unverzüglich begonnen werden
- Erregernachweis mit Empfindlichkeitsprüfung ist nur unter bestimmten Bedingung vorgeschrieben
- Septikämien bei Kälbern mit Durchfall werden überwiegen durch coliforme Keime verursacht
- Bei klinischen Anzeichen von Septikämie ist der Einsatz bakterzid wirksamer Substanzen vorzuziehen

Erregernachweis bei Kälbern mit Durchfall

Wann?

- Wenn das Einzeltierproblem zum Bestandsproblem wird
- Wenn die übliche Therapie (ohne Antibiotika) nicht mehr anschlägt
- Bei Verdacht des Vorliegens einer anzeigepflichtigen Erkrankung

- Bei Verdacht einer Infektion mit einem Zoonose-Erregers
- Für erregerspezifische Prophylaxemaßnahmen
- TäHAV*
 - Wiederholter Antibiotikaeinsatz in der Gruppe
 - Antibiotikawechsel in der Gruppe
 - Längerer Einsatz von Antibiiotika
 - Reserveantibiotika

Erregernachweis bei Kälbern mit Durchfall

Erregernachweis

- Ag-ELISA
- Kultur
- PCR

– ...

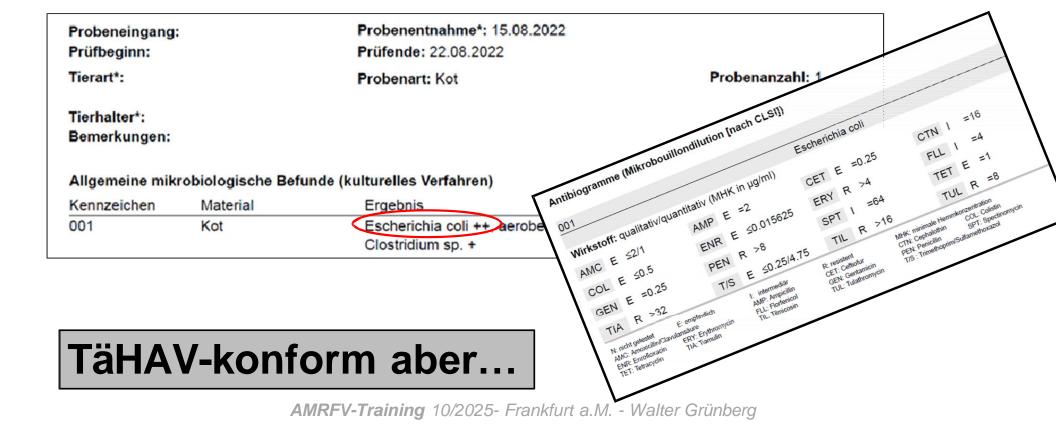
Verfahren

Schnell-Tests für Kot

- Weisen ausgewählte Erreger nach
- Geben keine Auskunft über das Vorliegen nicht untersuchter Erreger
- Es findet keine Empfindlichkeitsprüfungen statt

Nachweis von

- ETEC (Nachweis F5-Antigen)
- Rotavirus
- Bovines Coronavirus
- Cryptosporidium parvum
- (Giardia duodenalis)
- (Clostridium perfringens)


Kultur

- Fundierte Abklärung bakterieller Ätiologie
 - Anpassung der Therapie
 - Zusätzliche Möglichkeiten bei der Prophylaxe
- Anfertigung von Antibiogrammen bei Nachweis potenziell krankmachender Erreger
- z.T. Zeit- und kostenaufwändig
- Risiko "unkontrollierbarer Konsequenzen"

Kultur

Kultur

Probeneingang: Probenentnahme*: 15.08.2022

Prüfbeginn: Prüfende: 22.08.2022

Tierart*: Probenart: Kot Probenanzahl: 1

Tierhalter*: Bemerkungen:

Allgemeine mikrobiologische Befunde (kulturelles Verfahren)

Kennzeichen	Material	Ergebnis
001	Kot	Escherichia coli ++ aerobe Bazillen ++, Enterococcus sp. ++,
		Clostridium sp. +

Die Untersuchung auf Anaerobier verlief mit positivem Ergebnis (s. allgemeine mikrobiologische Befunde).

Die mykologische Untersuchung verlief mit negativem Ergebnis.

Zeichenerklärung: (+) geringer-, (++) mäßiger-, (+++) starker Keimgehalt

Die Erregeridentifikation erfolgte mittels MALDI-TOF Massenspektrometrie / Omnilog bzw.präsumtiv.

Identifikation Kennzeichen	Keim	Parameter	Ergebnis	Verfahren
001	Escherichia coli	Shigatoxin1	pegativ	Multiplex-PCR
001	Escherichia coli	Intimin	positiv	Multiplex-PCR
001	Escherichia coli	F5	negativ	Multiplex-PCR
001	Escherichia coli	Sta Toxin	negativ	Multiplex-PCR
001	Escherichia coli	Shigatoxin2	negativ	Multiplex-PCR
001	Escherichia coli	F 41	pegativ	Multiplex-PCR
001	Escherichia coli	E. coli-Toxine	positiv	Multiplex-PCR

Virulenzfaktoren

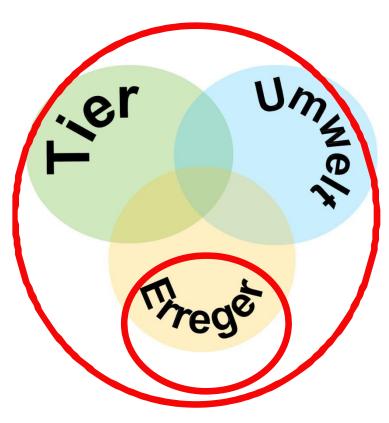
Behandlung von Kälberdurchfall ohne Antibiose??

Durchfall bei Kälbern

Optimierung der Therapie

Das empfängliche Individuum

- Immunstatus
- Gesundheitsstatus
- Ernährung
- ..


Der Erreger

- Infektiosität
- Virulenzfaktoren
- Tenazität

• ..

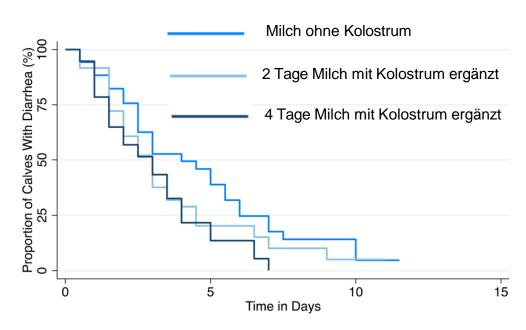
Das Milieu

- Hygiene
- Stallklima
- ...

Optimierung der Therapie

Orale Rehydratation

- Auswahl geeigneter Elektrolyt-Tränken
 - Nach anerkannter Rezeptur
 - Keine willkürlichen Mischungen
- Systematischer Einsatz dieser Tränken
 - Frühzeitig beginnen, solange Kälber noch saugen
 - Systematisch einsetzen
 - Tränkeplan
- Geeignete Aufstallung erkrankter Kälber
 - Kranke Kälber trinken langsamer, werden verdrängt...


Optimierung der Therapie

- Einsatz von Antiphlogese
- Zugabe von Kolostrum in die Tränke

• ...

Evidenzbasierte Zusatztherapien

Dauer der Durchfallerkrankung nach Behandlungsbeginn

Carter et al. 2022

Optimierung der Prophylaxe

Haltungsbedingungen

- Optimierung der Kolostrumversorgung
- Freier Zugang zu Wasser von Geburt an
- Optimierung der Tränkemenge
- Optimierung der Tränkehygiene

• ...

Danke, fürs Zuhören...

Walter.gruenberg@vetmed.uni-giessen.de